Positive Solutions of Fractional Differential Equation with -Laplacian Operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation with p-Laplacian Operator

We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operatorD 0 φp D α 0 u t f t, u t , D 0 u t 0, 0 < t < 1, u 0 u ′ 1 0, u′′ 0 0, D 0 u t |t 0 0, where 0 < γ < 1, 2 < α < 3, 0 < ρ 1, D 0 denotes the Caputo derivative, and f : 0, 1 × 0, ∞ × R → 0, ∞ is continuous function, φp s |s|p−2...

متن کامل

Positive Solutions for Three-Point Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator

We investigate the existence ofmultiple positive solutions for three-point boundary value problemof fractional differential equation with p-Laplacian operator −Dt β (φp(Dt α x))(t) = h(t)f(t, x(t)), t ∈ (0, 1), x(0) = 0,Dt γ x(1) = aDt γ x(ξ),Dt α x(0) = 0, where Dt β ,Dt α ,Dt γ are the standard Riemann-Liouville derivatives with 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, 0 ≤ α − γ − 1, ξ ∈ (0, 1) and t...

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Eigenvalue of Fractional Differential Equations with p-Laplacian Operator

Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/789836